

Research Concept: Nanoscale gold

Project Leader: Nigel Walker Ph.D

NTP Board of Scientific Counselors Meeting

December 6th, 2007

Uses of nanoscale gold

- Biomedical
 - Targeted chemotherapy/photodynamic therapy.
 - Topical applications for acne/psoriasis
 - Dental and bone implants
 - Colloidal gold-Alternative medicine
 - Antimicrobial coatings
 - In vivo imaging, contrast agents
 - Ex vivo diagnostic devices
- Electronics
 - Use as nanorods and nanowires for commercial applications
- Catalysts
 - Supported (gas and liquid phase) and soluble
- Cosmetics

Relative sizes

18nmx 300nm
Tobacco mosaic virus

5nm hemoglobin 5nm wide: Lipid bilayer

2nm x 400nm Carbon nanotubes

1nm C60 5nm G5 dendrimer

60nm Gold nanoshell

60nm Nano-C60

120nm HIV

40nm PEG-Qdot

14 nm x 81nm Rutile nano Ti0₂

1um

Some background on effects of gold/nanogold

- Gold
 - Gold is the most biologically inert metal
 - Occupational gold dermatitis, allergic reactions to Goldschlager
 - Due to dissolution of Au(0) to Au (i) or Au (II)?
- Nanoscale gold
 - Lack of toxicity of 1.9nm gold in after single dose
 - 3200 mg/kg for tumor bearing Balb/C, examined 1 year later.
 - Up to 700 mg/kg for CD-1 mice, examined 30 days later.
 - Some ADME studies
 - Oral: Uptake of 4, 10 nm and 28 but not 58nm Au nanoparticles from the gut
 - i.v.- Size and surface functional group can impact on the tissue distribution and whole body retention of the nanoscale gold
 - Inhalation: retention of 75% of 5-8nm Au particles after 6 hour inhalation study
 - No adequate in vivo toxicity studies using well characterized nanoscale gold of defined sizes and/or coating in the public literature.

Nominator (FDA-CSWG) recommendations

- Conduct rodent based studies
 - Absorption, distribution, metabolism and elimination studies
 - Oral and intravenous routes of administration (including blood-brain transfer)
 - Single and repeat dose toxicity studies (28 days) in rodents
 - Subchronic, dose-response toxicity studies in rodents (only if warranted).
- The studies should be conducted on
 - Nanoscale gold of one or two sizes (e.g. 10 nm 60 nm)
 - With and without surface coatings (e.g. polyethylene glycol or protein coated).
 - The nanoscale material should be thoroughly characterized before use, and after recovery from tissues.

Rationale for NTP studying nanoscale gold

- Significance and Public Health Impact
 - Primary focus is to increase our science base on the understanding how physiochemical properties impact on the ADME and toxicity of nanogold.
 - Widespread uncertainty in how to assess health risk of nanomaterials
 - Identified research need by FDA
 - May be used in their interpretation of the potential adverse biological and toxicological effects associated with exposure to nanoscale gold or products containing nanoscale gold
 - Anticipated that potential for exposure will increase as use increases
 - Actual exposure has not been quantified
- Project integrates with the NTP Nanotechnology Safety Initiative
 - Need to understand the effects of nanoscale materials in general before widespread exposure and/or effects have occurred
 - Identify key physicochemical properties that govern nanomaterial safety
 - Examine how nanomaterials enter, travel through, and deposit in the body
 - http://ntp.niehs.nih.gov/go/nanotech

NTP Nanotechnology Safety Initiative

- Ongoing program of multiple classes of nanomaterials
- Studies ongoing/in development
 - Core shell structure
 - Quantum dots
 - Carbon fullerenes
 - Carbon nanotubes
 - Metal Oxides
 - Titanium dioxide
 - · Ceric oxide
 - Dendrimers
 - Nanoscale metals
 - Nanoscale silver (reviewed at June 2007 BSC)
 - Nanoscale gold

ntp.niehs.nih.gov/go/nanotech

Key issues/questions for nanogold

- Need for publicly available information regarding the ADME and in vivo toxicity of nanoscale materials
 - Especially the zero state metals (Au, Ag).
- How do surface modifications affect ADME?
 - Complete ADME profiles of thoroughly characterized nanoscale golds are not available.
 - ADME of Au-support particle vs the Au-surface modified particle
- Choice of surface coatings and sizes
 - # possible permutations of size, shape and the variety of coatings that are or could be applied to nanoscale gold in a commercial setting.
- Dose-metrics
 - Particle number-based and surface area-based metrics increase with decreasing particle size.
 - Mass-based potency may differ, but surface area-based potency may not

Conceptual comparisons

Different size, same coating

- Two sizes of "uncoated" citrate-stabilized gold particles (from 10 nm to 100 nm).
- One "coated" nanoscale gold particle, surface functionalized with polyethylene glycol.

Hypotheses to evaluate:

- That the pharmacokinetics and tissue distribution of nanoscale gold particles of different sizes, are the same.
- That the pharmacokinetics and tissue distribution of nanoscale gold particles of comparable size but with different surface modifications are the same.
- That the toxicity of nanoscale gold particles of different sizes are the same.
- That the toxicity of nanoscale gold particles of comparable size but with different surface modifications are the same.

Aim 1

- Evaluate the effect of particle size and particle coatings on the pharmacokinetic profile of nanoscale gold.
 - Compare 3 specific nanogold preparations and conduct time course and tissue disposition studies in rodents (rats and mice).
 - Evaluate two sizes of "uncoated" citrate-stabilized particles (from 10 nm to 100 nm).
 - Evaluate one "coated" nanoscale gold particle (surface functionalized with polyethylene glycol).
- Evaluate tissue disposition after oral and intravenous administration.
 - Quantitation in tissues using established methods for analyses and, if feasible, location within tissues.
- Which nanogold particles to study?
 - Will be determined through discussion with scientists from NIST, FDA and NCIs Nanotechnology Characterization Laboratory.
 - NIST is developing 10, 30 and 60 nm gold standard reference materials

Aim 2

- Evaluate the effect of particle size and particle coatings on the toxicological profile of nanoscale gold in vivo.
- We propose to compare the three nanogold preparations and evaluate and compare the toxicological profiles
 - Sub-acute and sub-chronic oral exposure in rodents.
 - Studies should consider an evaluation of potential systemic toxicity and organ specific toxicity and the potential for toxicity to the immune and nervous systems.

